The evolutionarily stable distribution of fitness effects.

نویسندگان

  • Daniel P Rice
  • Benjamin H Good
  • Michael M Desai
چکیده

The distribution of fitness effects (DFE) of new mutations is a key parameter in determining the course of evolution. This fact has motivated extensive efforts to measure the DFE or to predict it from first principles. However, just as the DFE determines the course of evolution, the evolutionary process itself constrains the DFE. Here, we analyze a simple model of genome evolution in a constant environment in which natural selection drives the population toward a dynamic steady state where beneficial and deleterious substitutions balance. The distribution of fitness effects at this steady state is stable under further evolution and provides a natural null expectation for the DFE in a population that has evolved in a constant environment for a long time. We calculate how the shape of the evolutionarily stable DFE depends on the underlying population genetic parameters. We show that, in the absence of epistasis, the ratio of beneficial to deleterious mutations of a given fitness effect obeys a simple relationship independent of population genetic details. Finally, we analyze how the stable DFE changes in the presence of a simple form of diminishing-returns epistasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionarily stable dispersal strategies.

Using the idea that life-history parameters are subject to natural selection and should approach values that are stable optima, with the population immune to invasion by mutant individuals, we derive an analytic expression for the evolutionarily stable dispersal rate in a stochastic island model with random site extinction. The results provide interesting contrasts between three different optim...

متن کامل

The ideal free distribution as an evolutionarily stable state in densitydependent population games

In classical games that have been applied to ecology, individual fitness is either density independent or population density is fixed. This article focuses on the habitat selection game where fitness depends on the population density that evolves over time. This model assumes that changes in animal distribution operate on a fast time scale when compared to demographic processes. Of particular i...

متن کامل

Evolution of size-dependent flowering in a variable environment: partitioning the effects of fluctuating selection.

In a stochastic environment, two distinct processes, namely nonlinear averaging and non-equilibrium dynamics, influence fitness. We develop methods for decomposing the effects of temporal variation in demography into contributions from nonlinear averaging and non-equilibrium dynamics. We illustrate the approach using Carlina vulgaris, a monocarpic species in which recruitment, growth and surviv...

متن کامل

Variable timing of reproduction in unpredictable environments: adaption of flood plain plants.

We study the evolutionarily stable reproductive timing of annual plants that face unpredictable environmental disturbances. Plants living in a riverbed often experience a disturbance before they reproduce, suffering major fitness loss. Plants reproducing prior to the flood season are free from the risk of lost reproduction, but a small flowering plant can produce only a few numbers of seeds. If...

متن کامل

Evolutionarily stable range limits set by interspecific competition.

A combination of abiotic and biotic factors probably restricts the range of many species. Recent evolutionary models and tests of those models have asked how a gradual change in environmental conditions can set the range limit, with a prominent idea being that gene flow disrupts local adaptation. We investigate how biotic factors, explicitly competition for limited resources, result in evolutio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 200 1  شماره 

صفحات  -

تاریخ انتشار 2015